
Custom Code Hooks Starter Guide

The Custom Code Hooks add-on provides the ability to have your own custom PHP code executed inside
of NolaPro® when users perform various actions in the system. You can simply write a function that you
want to perform some additional task and then assign it to a predefined hook (also called an event or
trigger point). When the hook is reached in NolaPro it will call the function(s) that you registered with the
event. A trigger point might be when a customer record is modified, an order added, or payroll hours
entered.

Next, we'll walk through an example, so you can see how this is done. We will create our own function
that responds to the customer update trigger inside NolaPro. Let's say we have a customer relationship
management (CRM) program that we want to keep up to date with any NolaPro changes.

1. Create a folder called custom inside your nolapro folder. All of the files that you want included and
executed should go inside this folder. Only files directly under the custom folder will be
automatically included. You can create subdirectories inside the custom folder if you'd like to
create files that won't be automatically included inside NolaPro, but that may be referenced by
your hook functions.

2. Create a file inside custom called customer_updater.php (it can have any filename that you'd like
actually).

3. Open the customer_updater.php file in an editor.

4. Start a function definition called custom_customer_updater. (We recommend the convention of
beginning your custom functions with the word custom to avoid conflicts with any NolaPro
functions.) Add a parameter called $params which is an associative array and will contain relevant
data from the event.

function custom_customer_updater($params) {

}

5. Add the line var_dump($params) to get an idea of the data that will be passed in.

function custom_customer_updater($params) {
var_dump($params);

}

6. At the top of the customer_updater.php page, above the custom_customer_updater function, add a
line to register your new function with the customer update event. At the end of this document is a
list of all of the triggers that are available for tying custom functions to. The customer update one
that we'll need is called ar.customer.update.

register_custom('ar.customer.update', 'custom_customer_updater');

So the formula is register_custom('event.name', 'my_function'). One event can have several

functions attached and one function can apply to several events. You could also have a function
that emails you when a customer record is changed. You'd register it alongside the one above with:

register_custom('ar.customer.update', 'custom_email_me');

7. Open up NolaPro and go to Orders -> Customer Add/Update and update a customer. You should
see the result of var_dump which displays the contents of the $params array. It may look
something like the following:

array(7) { ["id"]=> string(4) "1209" ["table"]=> string(8) "customer" ["customerid"]=> string(4)
"1209" ["name"]=> string(16) "Noguska Test" ["event"]=> string(18) "ar.customer.update"
["userid"]=> string(2) "32" ["companyid"]=> string(1) "1" }

For the majority of events the array elements id and table will be set. These point to the key
database record that was added, updated or deleted during the event. Also with each event the
userid and companyid are passed. You can access these values in your custom function by using
$params['id'], $params['name'], etc.

8. Just displaying these values isn't helpful of course, so the next thing you might want to do is to
retrieve the entire customer record from the NolaPro database so that you can send the info to your
other system. Nolapro handles database interaction by utilizing the ADOdb database abstraction
layer. You can view documentation on this here: http://phplens.com/adodb/. To access the
database inside your function you'll first need to make available the connection that has already
been created.

function custom_customer_updater($params) {
global $conn; // Make the db connection available here

}

9. Write a query to get the customer record we are interested in and for now just send the data to the
screen (from this point you can modify it to update your system instead).

function custom_customer_updater($params) {
 global $conn; // Make the db connection available here
 $sql = "select * from customer where id='$params[id]'";
 $rs = $conn->execute($sql);
 if (!$rs) {
 // Add your own error checking here
 // Some error with the query
 return;
 }
 if ($rs->EOF) {
 // Record not found
 return;
 }
 // Access the fields by using $rs->fields['id'], etc.
 // or by doing a $r = $rs->fetchrow(); and then
 // $r['id'], etc.
 echo "Customer: " . $rs->fields['companyname'] ."
";

http://phplens.com/adodb/
http://phplens.com/adodb/
http://phplens.com/adodb/

 echo "Address: " . $rs->fields['address1'] ."
";
}

Here's an easy way to loop through records if you need to at some point in your function:

while($r = $rs->fetchrow()) {
 echo "ID: $r[id], Company Name: $r[companyname]
";
}

10. That's really all there is to getting your own code to run in response to activities within NolaPro.

List of Available NolaPro Triggers

NolaPro event names are produced by taking the module name, the section within the module and the
action being performed and concatenating them together with a period. So if the module is AR, the section
is Order and the action is Update, then when you register your function the event name to use would be
ar.order.update.

Module Section Action
admin company add
admin company delete
admin company update
admin emailcenter send
admin user add
admin user delete
admin user update
ap bill add
ap bill delete
ap bill update
ap check cashed
ap check uncashed
ap check void
ap check write
ap commissioncheck write
ap manualcheck write
ap po add
ap po delete
ap po passtoap
ap po receive
ap po update

Module Section Action
ap preapprovedcheck write
ap vendor add
ap vendor delete
ap vendor update
ap withoutpo receive
ar bankdeposit add
ar bankdeposit delete
ar carrier add
ar carrier delete
ar carrier update
ar carriermethod add
ar carriermethod delete
ar carriermethod update
ar creditcheck write
ar customer add
ar customer delete
ar customer update
ar invoice add
ar invoice delete
ar invoice update
ar order add
ar order delete
ar order invoice
ar order quote
ar order serviceticketpdf
ar order shipment
ar order update
ar payment add
ar paymentplan add
ar paymentplan delete
ar paymentplan post
ar paymentplan update
ar rma add
ar rma delete
ar rma update
ar salescategory add
ar salescategory delete

Module Section Action
ar salescategory update
ar salesperson add
ar salesperson delete
ar salesperson update
ar salesterritory edit
ar shipto add
ar shipto delete
ar shipto update
b2b customer update
b2b order add
b2b payment add
gl account add
gl account delete
gl account reactivate
gl account update
gl bank reconcile
gl voucher add
gl voucher delete
gl voucher post
gl voucher postreverse
gl voucher update
gl year close
inv inventorylocation add
inv inventorylocation delete
inv inventorylocation update
inv item add
inv item adjustment
inv item delete
inv item transfer
inv item update
inv itemlocation add
inv itemlocation delete
inv itemlocation update
inv itemvendor add
inv itemvendor delete
inv itemvendor update
pr check edit

Module Section Action
pr check write
pr companycontribution add
pr companycontribution delete
pr companycontribution update
pr employee add
pr employee update
pr employeededuction add
pr employeededuction delete
pr employeededuction update
pr generalbenefit add
pr generalbenefit delete
pr generalbenefit update
pr generaldeduction add
pr generaldeduction delete
pr generaldeduction update
pr generalfactors update
pr hours add
pr pension add
pr pension delete
pr pension update
pr period calculate

